Pro-E users (PTC creo)

Created by Selvaraj P on 5 June, 2018

below are few of equation to generate curves using CREO ... enjoy ...


EQUATIONSCartesian Coordinates: x, y, & z

The z variable is not necessary, but when used will give the curve that extra dimension. If in doubt, try z = t*10.

Sine

Cartesian coordinates

x = 50 * t

y = 10 * sin (t * 360)

Rhodonea

Cartesian coordinates

theta = t * 360 * 4

x = 25 + (10-6) * cos (theta) +10 * cos ((10/6-1) * theta)

y = 25 + (10-6) * sin (theta) - 6 * sin ((10/6-1) * theta)

Involute

Cartesian coordinates

r = 1

ang = 360 * t

s = 2 * pi * r * t

x0 = s * cos (ang)

y0 = s * sin (ang)

x = x0 + s * sin (ang)

y = y0-s * cos (ang)

Logarithmic

Cartesian coordinates

z = 0

x = 10 * t

y = log (10 * t +0.0001)

Double Arc Epicycloid

Cartesian coordinate

l = 2.5

b = 2.5

x = 3 * b * cos (t * 360) + l * cos (3 * t * 360)

Y = 3 * b * sin (t * 360) + l * sin (3 * t * 360)

Star Southbound

Cartesian coordinate

a = 5

x = a * (cos (t * 360)) ^ 3

y = a * (sin (t * 360)) ^ 3

Leaf

Cartesian coordinates

a = 10

x = 3 * a * t / (1 + (t ^ 3))

y = 3 * a * (t ^ 2) / (1 + (t ^ 3))

Helix

Cartesian coordinates

x = 4 * cos (t * (5 * 360))

y = 4 * sin (t * (5 * 360))

z = 10 * t

Parabolic

Cartesian coordinates

x = (4 * t)

y = (3 * t) + (5 * t ^ 2)

z = 0

Eliptical Helix

Cartesian coordinates

X = 4 * cos (t * 3 * 360)

y = 2 * sin (t * 3 * 360)

z = 5

Disc Spiral 1

Cartesian coordinates

/* Inner Diameter

d = 10

/* Pitch

p = 5

/* Revolutions

r = 5

/* Height; use 0 for a 2D curve

h = 0

x = ((d/2 + p * r * t) * cos ((r * t) * 360))

y = ((d / 2 + p * r * t) * sin ((r * t) * 360))

z = t * h

Butterfly

a=cos(t*360)

b=sin(t*360)

c=cos(4*t*360)

d=(sin((1/12)*t*360))^5

x=b*(exp(a)-2*c+d)

y=a*(exp(a)-2*c+d)

Fish

a = cos (t * 360)

b = sin (t * 360)

/* As "c" increases the fish gets fatter until it transforms into a figure 8.

c = 10

x = (C*a-20*((b)^2)/1.5)

y = c * a * b

Cappa

/* "c" is a scaling variable

c=20

/* Revolutions

r=1

/* Height

h=0

x=c*cos(t*r*360)*sin(t*r*360)

y=c*cos(t*r*360)

z=t*h

Star

/* "a" & "b" are scaling variables

a=2

b=2

/* If, r=2/3 ----> astroid

/* If, r=2 ----> ellipse; when a=b, its a circle

/* r cannot equal 1

r=2/3

x=a*(cos(t*360))^(2/r)

y=b*(sin(t*360))^(2/r)

z=0

Bicorn

/* "c" is a scaling variable.

c=5

a=cos(t*360)

b=sin(t*360)

x=c*a

y=c*(a^2)*(2+a)/(3+b^2)

Talbots

/* "c" is a scaling variable.

c=10

a=cos(t*360)

b=sin(t*360)

x=C*a*(1+exp(2)*(b^2))

y=C*b*(1+exp(2)*(b^2))

Cylindrical Coordinates: r, theta, & zSpiral

Cylindrical coordinates

r = t

theta = 10 + t * (20 * 360)

z = t * 3

Circle Spiral Column

Cylindrical coordinates

theta = t * 360

r = 10 +10 * sin (6 * theta)

z = 2 * sin (6 * theta)

Helical Wave

Cylindrical coordinates

r = 5

theta = t * 3600

z = (sin (3.5 * theta-90)) +24 * t

Basket

Cylindrical coordinates

r = 5 + 0.3 * sin (t * 180) + t

theta = t * 360 * 30

z = t * 5

Disc Spiral 2

Cylindrical coordinates

R = 50 + t * (120)

Theta = t * 360 * 5

Z = 0

Apple

Cylindrical coordinates

a = 10

r = a * (1 + cos (theta))

theta = t * 360

  

Spherical Coordinates: rho, theta, & phiButterfly Ball

Spherical coordinates

rho = 8 * t

theta = 360 * t * 4

phi = -360 * t * 8

Spherical Helix

Spherical coordinates

rho = 4

theta = t * 180

phi = t * 360 * 20

UFO

Spherical coordinates

rho = 20 * t ^ 2

theta = 60 * log (30) * t

phi = 7200 * t

Unnamed

Spherical coordinates

rho = 200 * t

theta = 900 * t

phi = t * 90 * 10