Learn about the GrabCAD Platform

Get to know GrabCAD as an open software platform for Additive Manufacturing

Visit our new homepage
VINU SHAJI

7 Feb, 2019 07:53 AM

HI Everyone, Is there a Way to Calculate The Speed and Torque Transmitted Through a Geneva Drive Mechanism.

Feb 7, 2019

The first one https://www.google.com/search?q=Calculate+The+Speed+and+Torque+Transmitted+Through+a+Geneva+Drive+Mechanism&oq=Calculate+The+Speed+and+Torque+Transmitted+Through+a+Geneva+Drive+Mechanism&aqs=chrome..69i57.701j0j7&sourceid=chrome&ie=UTF-8

Feb 7, 2019

Hai Ilirjan leci, I have already Tried that with google but not able to find,

Anyway Thanks

Feb 7, 2019

Hai ilirjan Leci Above google link is showing all Relevant Site, Can you give me a Direct link of the Site which you used to Design that would be helpful,

Feb 7, 2019

Starting with a couple of assumptions - that the slot is on the driven part and it is colinear with the radius, and that the driving part is the pin wheel - you can plot a line that reflects the ratio of degrees of rotation between the input pin wheel and the output slot wheel as follows. Looking at various points along the path in (and/or out) of the slot, the line that is __perpendicular__ to the pin-to-axis radial line on the pin wheel becomes the __Hypotenuse __of a right triangle while the line that is __perpendicular __to the slot on the slot wheel becomes the __Short Leg__ of a right triangle. If you divide the Hypotenuse by the Radius of the input pin wheel (pin center to pin wheel axis) you get an input distance A. If you divide the Short Leg by the Radius of the output slot wheel (pin center to slot wheel axis) you get an output distance B. This A:B is your distance/torque ratio for that pin position of your system. Using this formula you will get Infinity to Zero when the pin is entering at a right angle to the slot and the appropriate other ratios in the other pin positions. By always dividing A by itself to get 1 and dividing B by the same number, you can get an "apples to apples" data set for plotting your curve for how the input rotation compares to the output rotation. By calculating the ratio for a given set of pin positions derived by incrementally rotating the input pin wheel say 1 degree (1, 2, 3, 4, 5 degrees, etc.) and plotting all the resulting 1 to ### ratios you can create a curve that reflects the changes in distance/torque.

This is a fundamental approach that will give you a good feel for how and why things are happening the way they are.

Feb 8, 2019

Hi Jeff Lucan, Thank for the input but I am unable to Visualise, If it's Possible pls send me the image of finding A:B.

Feb 10, 2019

Sorry that I called the (blue) line perpendicular to the slot wheel radius the short leg because it looks like it will sometimes be the shortest and sometimes the middle length leg. Also, when the radii are collinear blue and red legs will be the same length. So, if you please, just replace the "Short Leg" term in my initial comments above as the blue leg.

Feb 10, 2019

Just for clarity, note that we are dividing by the radius because a larger radius is going to result in a smaller distance rotated. A 20cm gear meshing with a 10cm gear will turn half as much as the 10cm gear.

Feb 10, 2019

Also note that in many cases the ratio will flip. When the pin enters the slot, the pin wheel is rotating faster than the slot wheel. When the pin is all the way into the slot, if the slot wheel radius is shorter than the pin wheel radius (which is often the case at this point), then the slot wheel will rotate faster than the pin wheel.

The email with your password reset link has been sent.

If you don't receive the email within an hour (and you've checked your Spam folder), email us as confirmation@grabcad.com.

RESOURCES

Control

PARTNERS

Contact Us
Website Terms of Use
Software Terms of Use
Privacy policy
Trademarks
Your Data on GrabCAD

The Computer-Aided Design ("CAD") files and all associated content posted to this website are created, uploaded, managed and owned by third-party users. Each CAD and any associated text, image or data is in no way sponsored by or affiliated with any company, organization or real-world item, product, or good it may purport to portray.